Quantitative Analysis for Ethanol & Qualitative Analysis for Other Volatiles

Analytical Method(s): 1.0

Device: Hamilton MICROLAB 600A Liquid Processor/Dilutor | Serial Number: ML600HC11378

Volatiles Quality Assurance Controls Run Date(s):7/10/19

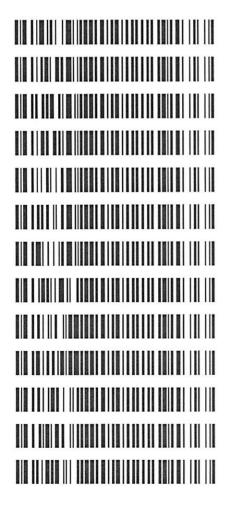
Calibration Date: 7/2/19

							_	
Multi-Compo	Level 2			Level 1			Control level	
nent mixture: Curve Fit:		Mar-22			Jan-22		Expiration	
Sep-20	1803028			1801036				
	0.2035				0.08		Target	
Lot#					12			Carroration
FN06041502	0.1832-0.2238				0.0731-0.0893		Acceptable Range	Candianon Date. 1/2/17
ok	g/100cc	g/100cc	0.2030 g/100cc	g/100cc	0.0830 g/100cc	0.0796 g/100cc	Overall Results	
	Lot# FN06041502		Mar-22 1803028 0.2035 0.1832-0.2238 Component mixture: Sep-20 Lot # FN06041502 o	Mar-22 1803028 0.2035 0.1832-0.2238 Component mixture: Sep-20 Lot # FN06041502 o	Mar-22 1803028 0.2035 0.1832-0.2238 Component mixture: Sep-20 Lot # FN06041502 o	Jan-22 1801036 0.0812 0.0731-0.0893 Mar-22 1803028 0.2035 0.1832-0.2238 Component mixture: Sep-20 Lot # FN06041502	Jan-22 1801036 0.0812 0.0731-0.0893 0.0830 Mar-22 1803028 0.2035 0.1832-0.2238 0.2030 Component mixture: Sep-20 Lot # FN06041502 o	Expiration Lot # Target Value Acceptable Range Jan-22

500	300	200	100	50	Calibrator level	Ethanol Ca
0.500	0.300	0.200	0.100	0.050	Target Value	Ethanol Calibration Reference Material
0.450 - 0.550	0.270 - 0.330	0.180 - 0.220	0.090 - 0.110	0.045 - 0.055	Acceptable Range	
0.5003	0.3000	0.1992	0.1000	0.0505	Column 1	
0.5019	0.2983	0.1972	0.1002	0.0524	Column 2	
0.0016	0.0017	0.002	0.0002	0.0019	Precision	
0.5011	0.2991	0.1982	0.1001	0.0514	Mean	

	Aqueous Controls		
Control level	Target Value	Acceptable Range Overall Results	Ove
80	0.080	0.076 - 0.084	0.080 g/100cc

REVIEWED


By Jeremy Johnston at 3:11 pm, Jul 16, 2019

Revision: 1

5

Issue Date: 01/03/2019
Issuing Authority: Quality Manager

3246	:181	LKI	ΛΛΟ
2126	.,-:	1-1-	-/11/

Alcohol Analysis	997991	L	8116-910SM
Alcohol Analysis	156743	T	6018-9109M
sisylsnA lodoolA	156688	l	480£-9102M
Alcohol Analysis	189931	Ĺ	M2019-3083
Alcohol Analysis	126686	L	Z805-9102M
Alcohol Analysis	166682	Ĺ	1805-9102M
Alcohol Analysis	189991	ļ	M2019-3080
Alcohol Analysis	126556	l	M2019-3069
Alcohol Analysis	196467	ŀ	M2019-3058
Alcohol Analysis	126434	ı	M2019-3051
Alcohol Analysis	126386	ı	M2019-3023
siaylsnA lodoolA	126366	l	M2019-3022
DESCRIPTION Alcohol Analysis	156323	ITEM 1	M2019-3017

Sample Name : INTERNAL STD BLK 1

Injection Date: Jul 10, 2019 Meridian

Wethod : Cull180014-Cull041167

uim	8	9	, †	7	
	1				oz
	\				22
					24
					56
	7.5				- 8Z
	7.560 -				30
					32 -
	prop				34
	n-propanol				- Aq
	_			ID2 B, Back Signal (001F0101.D)	
uim	8	9	b		
					50
					55 -
			\		24
					- 92
			4.6		82
			4.624 -		30
			2		32
			orog		34
			n-propanol		Aq
			=	D1 A, Front Signal (001F0101.D)	1070
				· · · · · · · · · · · · · · · · · · ·	

stinU	ArvomA	Атеа	uwnŢ	Compound Co	#
a\100cc	0000.0	00000.0	: T uwn T	Есрапод Со	· T
a\100cc	0000.0	00000.0	:2 nmul	Ethanol Co	. 2
a\100cc	0000.I	45.08342	:T uwnT	n-Propanol Co	. ε
a\700cc	0000.I	99£80.7₽	:S mmul	n-Propanol Co	. ₽

Sample Name : MIX VOL FW06041502 Laboratorv : Meridian

Laboratory : Meridian Injection Date : ALCOHOL.M Method : ALCOHOL.M

Method: ALCOHOL.M CULL180014-CULL041167

nim	8	9	*		7	
	1		1/////	<u></u>		50
				ω		- 22
	\\.		4.290 - 4.6 4.941 -	3.370 -		54-
	7.561 -		90 - ethanol 4.640 - ace 1 - isopropy	methanol		- 97
			· ethanol 540 - acetone isopropyl alcohol	nol		- 82
	n-propanol		ne Ilcohol			- Aq
	0 1), Back Signal (002F0201.D)	EIDS E
nim	8	9	†		2	
				1		
				ω		22
				617-	2.577 -	- 42
			4.299 - 4.625 - r	3.077 _isopı		- 9Z
			∥⇒ '	3.077 - ethanol 3.617 - isopropyl alcohol	methanol	- 82
			acetone -propanol	nol		Aq
					, Front Signal (002F0201.D)	A rain

 sjinU	дииошА	Area		Column	Compound	#
a\100cc	£0£1.0	87060.7	٠ ـ ـ ـ ـ ـ ـ	Tmulo2	Егрчиот	
d\100cc	elei.o	52425.7	-	Column	Есрапод	
a\100cc	0000.I	28,05346		Column	n-Propanol	
a/100cc	J.0000	28,64399		Column	n-Propanol	

VOLATILES DETERMINATION CASEFILE WORKSHEET

†00).0	£80.0	S70.0	640.0			
пкэМ 1	10 %S	иgiH	моД	Overall Mean (g/100cc)			
%00.2	Uncertainty of Measurement (UM%): 5.00%			Reporting of Results			
	fer to Instrument Method: Alcohol.m milton Auto-Dilutor Serial Number: ML600HC11378						
ן כפענרמולץ.	Instrument method is stored centrally.					ևո շ էrսment Լո	
	I# bod Alcohol Method #1						
					рот	Analysis Meth	
	0.640:0	9640.0	9000.0	6670.0	£6Z0.0	(25001/g)	
	9670.0	9670.0	9000.0	6670.0	£670.0	Sample Results	
	Over-all Mean	Mean Value	Column Precision	Column 2 FID B	Column 1 A QIA		
	Analysis Date(s): 10 Jul 2019					Laboratory N	

Calibration and control data are stored centrally.

16

Revision: 1 Issue Date: 01/04/2019

Issuing Authority: Quality Manager

Page: 1 of 1

670.0

Reported Result

Volatiles Determination Casefile Worksheet

Sample Name : QCL-L-A

Laboratory : Meridian Injection Date : Jul 10, 2019

Wethod : CULL180014-CUL1041167
Acq. Instrument: CLI180014-CUL1041167

nim	8		9	1 1 1	7		2	
								22
					4.289 -			- 7 7
	1	7			- et			82
	ا	ກ ກ ໝ			ethanol			30
	Ţ	3						35 - 35
	ו- סיס סיס							Aq
		<u>.</u>				(a.ri	3ack Signal (003F030	-
nim	8		9	1	*		2	50 -
								22
						ω		- 42
				4		3.077 -		- 82 - 52
				4.624 -		ethanol		- οε
				n-pr		anol		35
				n-propanol				Aq
				<u> </u>		(a.r	ront Signal (003F030	-

d\100cc	0000.1	24970.74	: 2	Column	n-Propanol	. 4	
DD00T/5	0000°T	\$LSL9.8\$: T	Column	n-Propanol	. ε	
DD00T/5	6670.0	7.12844	: 2	Column	Еграпод	. 2	
a\700cc	£670.0	₱ 58 76.8	: T	Column	Етрапод	.ı	
							-
stinU	AnnomA	Area		Column	Compound	#	

Sample Name : QC1-1-B Laboratory : Meridian Injection Date : Jul 10, 2019

Method : ALCOHOL.M

Ycd. Instrument: CN11180014-CN11041167

uim	8		1	1	9	 	†			2	1	
	1		•				1					- 22 - 20
							4.290 -					- 5 2
		7.5					- eth					82
		7.559 -					ethanol					30
		n-propanol										35
		panol										Aq
		_								(0.10407+00))2 B, Back Signal	EIC
nim	8		,	,	9		7	1		2		
									4			50Z
									V			52
									V			54
									3.0			- 9Z
							4		3.078 -			- 82
							4.625 -					30
							5		ethanol			+
							12		nol			32
							n-propanol					34
							an					Aq
							5			(0:10+0 1+00)	A Front Signal ,A f	
						 				(0.0469401 D)	Ignoi2 tron3 A M	בוט

ajinU	дипош А	Area		Column	Compound	#	
a\100cc	£670.0	88000.7	: τ	Column	Еграпој	.τ	_
a\100cc	6670.0	T66ST'L	: 2	Column	Етрапод	. 2	
a/100cc	0000 T	45.80222	: T	Column	n-Propanol	. ε	
a\100cc	J.0000	06EZZ.74	: 2	Column	n-Propanol		

VOLATILES DETERMINATION CASEFILE WORKSHEET

Column 2

Analysis Date(s): 10 Jul 2019

Laboratory No.: 0.08 FN04171701

Column 1

			080.0			
		 1)ţ	eported Resi	Я		
†00°	0	480.0	940.0		080.0	
ngsM 10	%5	ИgiH	моД	(၁၁၅)	(g/10) Mean (g/10	О
%00.2 :(ment (UM%)	y of Measure	Uncertaint	_,_,_,	gesnīts	Reporting of F
ed centrally.	orots si bodiom i	บอนเกมรน[878	per: ML600HC11	nt Method: Alcol	nstrument In
fer to Blood Alcohol Method #1						efer to Blood
					po	Analysis Meth
	C000'0	8080.0	2000.0	1180.0	9080.0	(25001\g)
	\$080.0	2080.0	0000.0	2080.0	2080.0	Sample Results
	Over-all Mean	Mean Value	Column Precision	KID B	FID A	

Calibration and control data are stored centrally.

Revision: 1 lssue Date: 01/04/2019 lssue Date: 01/04/2019 lssuing Authority: Quality Manager

Page: 1 of 1

Volatiles Determination Casefile Worksheet

Sample Name : 0.08 FN04171701-A
Laboratory : Meridian
Injection Date : ALCOHOL.M
Method : ALCOHOL.M
Acq. Instrument: CU11180014-CU11041167

uim	8	9	†	5	
-	1		1		50
	\		٧_		- 22
			4.2		- 7 Z
			4.289 -		92
	7.		<u>e</u>		82
	7.558		ethanol		30
			<u>o</u>		35 -
	n-propanol				34
	ора				E
	<u>nol</u>				Aq
				ck Signal (005F0501.D)	FID2 B, Ba
uim	8	9	*	2	
					50 -
					52
					24
				3.0	- 9Z
			4	3.077 -	- 82
			624		30
			<u> </u>	ethanol	35
			4.624 - n-propanol	<u>o</u>	34
			opa		F
			<u>15</u>		Aq
				(G.10207200) IsrugiS In	FID1 A, Fro

a\100cc	0000.I	81168.74	Column 2:	n-Propanol	• ₽	
a\100cc	0000°T	87264.84	Column 1:	n-Propanol	.ε	
d\100cc	2080.0	7.28750	Column 2:	Ethanol	٠.	
a\100cc	2080.0	£6581.7	Column 1:	Ethanol	. τ	
						-
stinU	JunomA	Area	Column	Compound	#	

Sample Name : 0.08 FN04171701-B
Laboratory : Meridian
Injection Date : ALCOHOL.M
Method : ALCOHOL.M
Acq. Instrument: CU11180014-CU11041167

ш	8	9	, t	1 1	2	
	1		1			50
			V			- 22
			4.290 - ethanol			- 7 2
	\		0			- 92
	7.5		eth			- 82
	7.560 -		ano			30
			» —			32
	n-propanol					34
	banc					Aq
	<u> </u>			((ck Signal (006F0601.D	
u	8	9	*		2	
		 				50
						22
				V		54
			\	3.079 -		56 –
			4.6	79 -		- 82
			26	eth		<u></u> Θε
			٦	ethanol		32
			prog	_		34
			4.626 - n-propanol			E Aq
				((J. 1090 1006 100	FID1 A, Fro

. ₽	n-Propanol	Column	: 2	47.12738	0000.1	a/100cc
. ε	n-Propanol	Column	: τ	45,81488	0000 T	a\100cc
. 2	Еграпод	Column	: 2	T.ZSIGI	1180.0	a\700cc
•т	Еграпод	Column	: τ	PSPII.7	9080.0	a\100cc
#	Compound	Column		Area	JunomA	adinU

VOLATILES DETERMINATION CASEFILE WORKSHEET

			T# P	усорој Жесро	Refer to Blood
				po	Analysis Meth
0.50710	0.2032	2000.0	0.2030	0.2035	(25001\g)
0.2030	0.2029	2000.0	0.203.0	8202.0	Sample Results
Over-all Mean	эпівУ пвэМ	Column Precision	Column 2 FID B	Column I FID A	
6102 lu	Date(s): 10 J	sisylanA		o:: QC2-1	Laboratory No

		502.0		
	יוןנ	sported Resi		
110.0	412.0	261.0		£02.0
5% of Mean	иgiH	моД	(550)	Overall Mean (g/10
nent (UM%): 5.00%	y of Measuren	Uncertain		Reporting of Results
		829		Refer to Instrument Method: Alcol- Hamilton Auto-Dilutor Serial Numb

Calibration and control data are stored centrally.

Revision: 1 lssue Date: 01/04/2019 lssuing Authority: Quality Manager

Instrument method is stored centrally.

Page: 1 of 1

Volatiles Determination Casefile Worksheet

Instrument Information

Sample Name : QC2-1-A Laboratory : Meridian

50

Laboratory : Meridian Injection Date : ALCOHOL.M

Acq. Instrument: CULL180014-CULL041167

FID2 B, Back Signal (025F2501.D)	- 4c - 5c - 8c - 8c - 8c - 4c - 4c		4.288 - ethanol		7.557 - n-propanol		
him 8 6	FID2 B, Back Signal (025F2501.				_		
50-				9	 	8	uịm
22 = -	1						
gz =	97		\				
58 -	- 8Z	V	4.6				
4.624 - 1 2.077	F	3.0	24				
	-	77 -					
Pog ⊕ +8:	34	eth	prop				
n-propanol	100 200	anol	anol				
FID1 A, Front Signal (0.25F2501.D)	FID1 A, Front Signal (025F2501.						

a\700cc	J.0000	47.25198	: 2	Column	n-Propanol	. 4	
a\100cc	0000 T	97601.34	: [Column	n-Propanol	. ε	
a/100cc	0.2030	TST#6.81	: 2	Column	Ethanol	. 2	
a/100cc	8202.0	18.21442	: [Column	Ethanol	•т	
atinU	JunomA	Area		Column	Compound	#	

Sample Name : QC2-1-B
Injection Date : QC2-1-B
Meridian

Method : ALCOHOL.M

Acq. Instrument: CULL180014-CULL041167

uļw	8	 9	, t	f		
	7.556 -		4.288 -			50 57 57 58 58 58
	- n-propanol		- ethanol		22 B, Back Signal (026F2601.D)	Aq - 48 - 48 - 32
nim	8	 9	b		2	
			4.624 - n-propanol	3.077 - ethanol		4q 4e 5e 0e 8c 8d 8d 4d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2
		 			(O.106F2601.D)	DI4

a\100cc	0000.I	S6S\$S.7\$	Column 2:	. n-Propanol	Ð
a/100cc	0000.I	96142.84	Column 1:	. n-Propanol	3
a\100cc	0.203.0	21720.61	Column 2:	. Ethanol	7
a\100cc	2502.0	18.33060	Column 1:	. Ethanol	τ
atinU	JRUOMA	Area	Column	Compound	#
	a\T00cc a\T00cc a\T00cc	0.2035 g/100cc 0.2035 g/100cc	20001/g 2600.0 03066.81 20001/g 0602.0 2050.91 20001/g 0000.1 36140.34	Column 1: 18.33060 0.2035 g/100cc Column 2: 19.05712 0.2030 g/100cc Column 1: 46.24196 1.0000 g/100cc	Ethanol Column 1: 18.33060 0.2035 g/100cc . Ethanol Column 2: 19.05712 0.2030 g/100cc g/100cc . n-Propanol Column 1: 46.24196 1.0000 g/100cc

VOLATILES DETERMINATION CASEFILE WORKSHEET

	Refer to Blood Alcohol Method #1						
hodsis Method							
	0.00.0	6280.0	6000.0	4680.0	\$280.0	(25001/g)	
	0.0830	1 £80.0	7000.0	\$880.0	8280.0	Sample Results	
	Over-all Mean	Mean Value	Column Precision	Column 2 FID B	Column 1 FID A		
	Analysis Date(s): 10 Jul 2019					Laboratory No	

		£80.0		
	ılt	sborted Resu	 Р	
200.0	880.0	870.0		£80.0
5% of Mean	hgiH	моД	Overall Mean (g/100cc)	
%00.2 :(%MU) tna	Uncertainty of Measurement (UM%): 5.00%			Reporting of Results
		878		Refer to Instrument Method: Alcoh Hamilton Auto-Dilutor Serial Numb

Calibration and control data are stored centrally.

Revision: 1

lssue Date: 01/04/2019 Issuing Authority: Quality Manager

Instrument method is stored centrally.

Page: 1 of 1

Volatiles Determination Casefile Worksheet

Instrument Information

Sample Name : QCI-2-A Laboratory : Meridian Injection Date : Jul 10, 2019

Method : ALCOHOL.M

Acq. Instrument: CULL180014-CULL041167

nim	8	9	†	5	
	1		1		
	\		V		- 22
			4.288 -		54
	1		88		- 9Z
	7.5		e		- 82
	7.555		ethanol		30
	, =		<u>o</u>		32 -
	pro				34
	n-propanol				Aq
				(O.10357350) Isngi2;	FID2 B, Back
uim	8	9	b	2	
			1		- 02
					55 -
				V	- 5 4
				3.076 -	- 92
			4.6	76 -	- 82
			4.622 -	ett	30
				ethanol	32
			pro	<u>u</u>	34
			n-propanol		Aq E
				(G.103E73E0) langi2 1	FID1 A, Fron

a\700cc	J.0000	6808£,7₽	Column 2:	n-Propanol	· 4	
a\100cc	0000.I	8E160.94	Column 1:	u-bropanol	. ε	
a/100cc	2580.0	7.52597	Column 2:	Еграпод	٠.	
a/100cc	8280.0	7.35732	Column 1:	Ethanol	.τ	
stinU	JunomA	Area	Column	Compound	#	

Sample Name : QCL-2-B Laboratory : Meridian Injection Date : Jul 10, 2

Injection Date : ALCOHOL.M

Acq. Instrument: CULL180014-CUL1041167

7.560 -	4.290 - ethanol	20 - - 27 - - 28 - - 28 - - 30 - - 30 - - 30 - - 31 - - 32 - - 32 - - 32 - - 33 - - 34
- n-propanol		FID2 B, Back Signal (036F3601.D)
im 8	Þ	\$
		zo -
	3.078 - ei	- 22 - 72 - 92 - 28 - 30 - 30
	8 - ethanol 4.625 - n-propanol	Aq - 4£ - 2€
		FID1 A, Front Signal (036F3601.D)

_	stinU	ЭпиотА	укез	Column	Compound	#	,
	a\100cc	5280.0	T287I,7	Column 1:	Есрапод	τ.	
	a\100cc	₽£80.0	EZTEE.T	Column 2:	Ethanol	٠.	
	a\700cc	σοοο.τ	45.09525	Column 1:	n-Propanol	. ε	
	d\100cc	0000.Ι	9 2822.9₽	Column 2:	n-Propanol	Ť	

nim 8

Sample Wame : INTERNAL STD BLK Laboratory : Meridian

Laboratory : Meridian Injection Date : Jul 10, 2019

Method : CULL180014-CUL1041167
Acq. Instrument: CLIL180014-CUL1041167

7.558 - n-propanol			Aq
<u>o</u>		-ID2 B, Back Signal (037F3701.D)	_
nim 8 8	Þ	2	
			_ SO
			- 22
			24
			- 97
	4.		- 82
	4.625 -		30
			32
	n-propanol		34
	pan		t i
	' <u>o</u>	(- Aq
		-ID1 A, Front Signal (037F3701.D)	i

ajinU	дииомА	Атеа	Column	Compound	#	
d\100cc	0000.0	00000.0	Column 1:	Есрчиот	. I	
a\100cc	0000.0	00000.0	Column 2:	Ethanol	. 2	
a/100cc	0000.I	\$668I.\$\$	Column 1:	n-Propanol	.ε	
22001/p	0000.1	99225.24	Column 2:	n-Propanol	7	

```
dua HOTANTEE [20007/6]
                                [g/l00cc] Dilution
                                                              Run Location Inj
                      File name
                                *.qitluM dmA əlqms2
                                                 Sample Name
            Cal #
                                                   /ALCOHOL.M
  C:/CPGm32/1/Dsts/07-10-19_SAMPLES/07-10-19_SAMPLES 2019-07-10 14-00-40
                                                             Method file name:
                                                                     Operator:
                                                      SXSLEW
                                                             gedneuce Oberstor:
                                                      SXSLEW
                                          7/10/2019 2:15:27 PM
                                                                gedneuce arart:
                                             T0-T6 SYMPLES.LOG
                                                                      rodpook:
C:/Cyem35/T/D9F9/01-10-16 ZyMbrez/01-10-16 ZyMbrez 5018-01-10 T#-00-#0/01
 Data directory path: C:/Chem32/1/Data/07-10-19_SAMPLES/07-10-19_SAMPLES 2019-07-10 14-00-40/
                                               IO-19 SAMPLES.S
                                                               Sequence table:
гчшрје
                                    Summary
```

_				~ ~ TOX	_	0.0	0.0
Þ	036F3601.D		-	ĞСТ-∇-В		98	
Ð	035 F 3501.D		-	QC1-2-A		32	
Ð	034F3401.D		-	M2019-3118-1-B		34	
Þ	033F3301.D		-	M2019-3118-1-A		33	
Þ	032F3201.D		-	M2019-3109-1-B		32	
Ð	O31F31O1.D		-	A-1-6016-6102M		3.7	
₽	030F3001.D		-	M2019-3084-1-B		30	
Þ	029F2901.D		-	M2019-3084-1-A		55	
Đ	028F2801.D	0000.1	-	M2019-3083-1-B		28	
₽	O27F2701.D	0000.I	-	A-1-880E-910SM		27	
Ð	026F2601.D	0000.1	-	ĞСS-Т-В		56	
Ð	025F2501.D	0000.1	-	ĞCS-1-₩		25	
₽	024F2401.D	J.0000	-	M2019-3082-1-B		24	
Ð	023F2301.D	0000.1	-	A-1-280E-6102M		23	
7	022F2201.D	0000.1	-	M2019-3081-1-B	τ	22	
7	OSIESTOI.D	0000.I	-	A-1-180E-610SM	τ	21	
₽	020F2001.D	0000.1	-	M2019-3080-1-B	Ţ	20	
Đ	0.19F1901.D	0000°T	-	A-1-080E-610SM	τ	6Τ	
₽	018F1801.D	0000.1	-	M2019-3069-1-B	τ	78	
₽	OT/F1701.D	0000.τ	-	A-1-6306-610SM	τ	LΤ	
7	OleFleol.D	0000.τ	-	M2019-3058-1-B	τ	91	
7	OTSETSOT'D	0000.1	-	M2019-3058-1-A	τ		ST
Ð	014F1401.D	1.0000	-	W2019-3051-1-B	τ	₹T	ÐΤ
Đ	013F1301.D	0000.1	-	A-1-1205-610SM	τ		ΣŢ
7	OTSETSOT D	0000.1	-	M2019-3023-1-B	Ţ	75	TS
7	OTTETTOT'D	0000.τ	-	M2019-3023-1-A	τ		ΤŢ
Ð	OTOF1001.D	0000.τ	-	WS019-3022-1-B	τ		OΤ
ŧ	009F0901.D	0000.τ	-	M2019-3022-1-A	τ	6	6
Ð	008E080T'D	0000.τ	-	M2019-3017-1-B	τ	8	8
Ð	007F0701.D	0000.τ	-	M2019-3017-1-A	τ		L
ŧ	006F0601.D	0000.τ	-	0.08 FW04171701-	τ		9
ŧ	OOSF0501.D		-	0.08 FN04171701-	τ	S	9
ŧ	004E0401.D		-	бст-т-в	τ	₹	₹
ŧ	003E030T'D		-	ŎC I- I-¥	τ	ε	ε
C			-	WIX AOF EMOCOTIE	τ	2	2
7	OOLFOLOLD		-	INTERNAL STD BLK	τ	τ	Ţ
_							

7

1,0000 037F3701.D

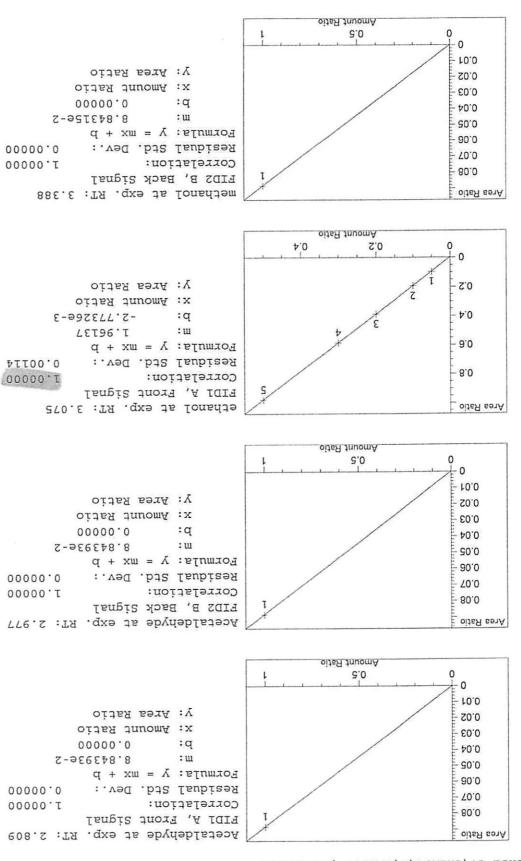
I INTERNAL STD BLK

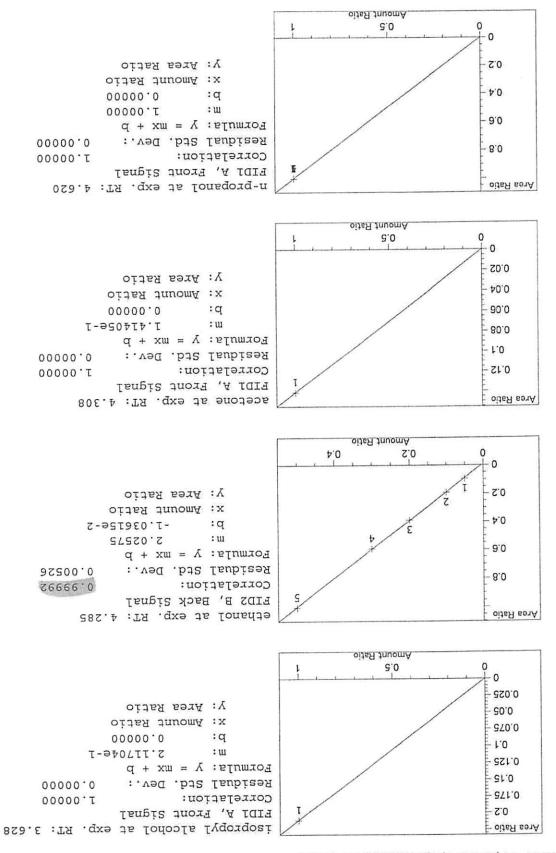
7£ 7£

Sequence File C:/Chem32/...9_SAMPLES/07-10_19_SAMPLES 2019-07-10 14-00-40/07-10-19_SAMPLES.S

Method file name: C:\Chem32\1\Data\07-10-19_SAMPLES\07-10-19_SAMPLES 2019-07-10 14-00-40

 Run Location Inj
 Sample Name
 Sample Amt
 Multip.*
 File name
 Cal #


 38 38
 1 EMPTY
 - 1.0000 038F3801.D
 0


)verview Table	
T	Signal 2: FID2 B, Back Signa
	Signal 1: FID1 A, Front Sign
ignal Details	
	Z I.00000 n-propano
	T T.00000 n-propano
	# [a\100cc]
:(eldsd elgmss ni des don li) noi:	
le (ending previous bracket)	Keante of tree cho
with bracketing:	If the sequence is done
	Normal Report after
	Printout of recalibratios af
	Calibration Report Options:
Floating Average New 75%	Average Retention Time:
Average all calibrations	Recalibration Settings: Average Response :
Едиад	метаус :
Ignored	urbīno
Linear	: : : : : : : : : : : : : : : : : : :
No, only for identified peaks	Correct All Ret. Times:
Yes, identified peaks are recalibrated	Partial Calibration :
0.100 min nor reported	Abs. Non-ref. Window : Uncalibrated Peaks :
\$ 000.0	
nim 001.0	
# 000.0	Rel. Reference Window :
. у	Signals calculated separatel
Tuesday, July 02, 2019 4:08:55 PM	
Calibration Setting	Lerenes
libration Table	50

```
Amount Ratio.
                                                            -0
                                                             - 10.0
                  Y: Area Ratio
                                                             - SO.O
                x: Amount Ratio
                                                             £0.0
                00000.0
                            :q
                                                             - 40.0
                            : W
             8.04277e-2
                  Formula: Y = mx + b
                                                             - 20.0
                  Residual Std. Dev.:
        00000.0
                                                             80.0
                        Correlation:
        00000.τ
                                                             - 70.0
                 FIDT W' Exout Sidus]
                                                             Area Ratio
           methanol at exp. RT: 2.586
    Calibration Curves
    Warning : Curve requires more calibration points., (methanol)
                                               I Marnings or Errors :
                                            ***Mo Entries in table***
                              Peak Sum Table
                          Z-964601.2 84148.74
                                              J.00000
                                                        Ð
                          47.08141 2.12398e-2
                                              1.00000
                                                       ε
                          Z-901680.2 09788.74
                                              J.00000
                          Z-949680.2 £2238.74
                                              J.00000
                                                        2
                                                        7.550 Z T
                                              J.00000
       48.17994 2.07555e-2 No Yes 2 n-propanol
 10.70642 9.34019e-2 No No 2 isopropyl alcohol
                                                        T 2 696°₽
                                              1.00000
                                                        τ
                                                           ₹.661 2
          6.89301 1.45075e-1 No No 2 acetone
                                              1.00000
                                                        S
                                              1.00000
                          46.10006 2.16919e-2
                          45.42292 2.20153e-2
                                              J.00000
                                                        Þ
                                                        ε
                          46.01707 2.17311e-2
                                              J.00000
                                              J.00000
                          Z-94650 Z.17644e-24
                                                        7
                                                        4.620 1 1
                                              J.00000
       45.96296 2.17566e-2 No Yes 1 n-propanol
                                                        I I 80€.₽
          6.49940 1.53860e-1 No No 1 acetone
                                              1.00000
                          47.84081 1.04513e-2
                                              I-900000.2 2
                          Z-966270.1 25626.72
                                              4 3.00000e-1
                          18.62832 1.07363e-2
                                              3 2.00000e-1
                          9.21829 1.08480e-2
                                              2 1.00000e-1
                                              4.285 2 1 5.0000e-2
          No 2 ethanol
                      oN 2-964280.1 66818.4
                                                        3.628 1 1
                                              1.00000
 No 1 isopropyl alcohol
                       ON I-963720.1 22087.9
                                                          Z 88E.E
                                              1.00000
                                                        τ
         No 2 methanol
                       4.26062 2.34707e-1 No
                                              I-900000.2 S
                          45.10629 1.10849e-2
                                              4 3.00000e-1
                          2-987721.1 10103.32
                                              3 2.00000e-1
                          Z-9640ZT'T 6Z648'LT
                                              2 1.00000e-1
                          8.88798 1.12512e-2
                                              3.075 1 1 5.0000e-2
          4.42648 1.12957e-2 No No 1 ethanol
                                                        2 .977 2 1
                      4.26100 2.34687e-1 No
                                              J.00000
     No 2 Acetaldehyde
                                              J.00000
                                                       Z.809 I I
     4.26100 2.34687e-1 No No 2 Acetaldehyde
         3.69669 2.70512e-1 No No 1 methanol
                                                       Z 2 985.2
                                              1.00000
[a\100cc]
                                                RT Sig Lvl Amount
                 Rap. Factor Ref ISTD #
                                      Area
       Compound
```

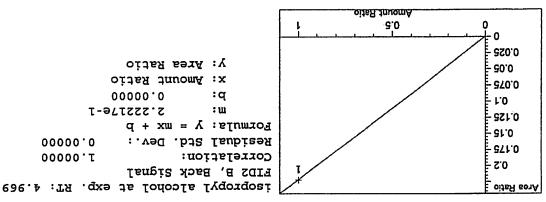
2 of 5

0 -0 - SO.0

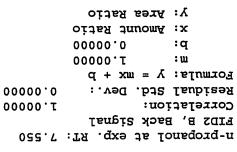
- 40.0

- 90.0

- 80.0


1.0

0.12 -


- 41.0

Area Ratio

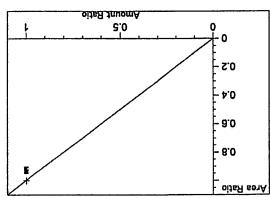
```
y: Area Ratio
         x: Amount Ratio
         00000.0
                      ١q
      T-9890E7'T
                      : w
           Formula: Y = mx + b
00000.0
           Residual Std. Dev.:
J.00000
                  Correlation:
           FIDS B, Back Signal
     acetone at exp. RT: 4.661
```


Amount Ratio

y: Area Ratio

٠q

: w


x: Amount Ratio

00000.0

Z.2ZZZ7e-1

00000.0

T.00000

Sample Name : 0.050 FN04271601

Acq. Instrument: Cull180014-Cull041167

Meridian

Meridian

Meridian

Meridian

nim 8	9 , , ,	2	
			50
\	4.	F	22
1	4.290	Ę-	24
1	•	<u></u>	56
1	ethanol		- 28
7.559	n <u>ol</u>	<u>[-</u>	30
		<u>F</u>	35
-pa		-	34
n-propanol			Aq
	-05-19_CAL 2019-07-02 15-03-44/001F0101.D)	FID2 B, Back Signal (07-02-19_CAL/07	
nim 8	9 +	Z	i
		<u> </u>	50·
	\/ \	<u>‡</u>	22 ·
	<u> </u>	<u> </u>	54
		[-	Se -
	116.	r.	- 8Z
	4.625 -	-	- 0€
	, i	<u> </u>	3S
	<u> </u>	Ę.	34
	n-propanol		Aq
	-02-19_CAL 2019-07-02 15-03-44/001F0101.D)	FID1 A, Front Signal (07-02-19_CAL/07	

stinU	ЭпиомА	Area	Сојиши	Compound	#	
a\700cc	2020.0	84924.4	Column 1:	Есрапод	'τ	
Z/100cc	₽ Z50.0	668T9°\$	Column 2:	Ethanol	2 ،	
3\T00cc	J.0000	42.96296	Column 1:	n-Propanol	. ε	
3\700cc	J.0000	₱66LT°8₱	Column 2:	n-Propanol	. 4	

Sample Name : 0.100 FN08101601

Acq. Instrument: ALCOHOL.M

Laboratory : Meridian

Meridian

Meridian

O.100 FN08101601

nim	8	9	*	5	-d
	17		\(\frac{1}{2}\)		
	11		V		22 -
	W.		4.289 -		7¢ -
	W.		.		F 97
	7.559		et		28 -
	' 8 9		ethanol		30 30
	3		-		- 5 E
	n-propanol				£"
	anol				E Aq.
		3-44/002F0201.D)	<u>0-31 20-70-6102 15-0</u>	Signal (07-02-19_CAL\07-02-19_C	FID2 B, Back
nim	8	9			
				- V	- 02
			11		22
				· ·	24-
			l	3.0	- 9Z
			4.625 -	3.078 -	28 –
			25 -	•	30
				ethanol	35 -
			go	<u>o</u>	34
			n-propanol		Aq
		3-44/002F0201.D)		Signal (07-02-19_CAL\07-02-19_C	FID1 A, Front

•	etinU	ЭпиотА	Area	Содиши	Compound	#	•
	a/100cc	0001.0	86788.8	Column 1:	Ethanol	τ.	_
	a\ 100cc	0.1002	9.21829	Column 2:	Ethanol	٠.	
	a\700cc	0000.τ	05946.24	Column 1:	n-Propanol	. ε	
	a\T00cc	J.0000	£2228.74	Column 2:	n-Propanol	. 4	

Sample Name : 0.200 FW03301601 Laboratory : Meridian Injection Date : Jul 2, 2019

Mechod : ALCOHOL.M ACQ. Instrument: CULL180014-CUL1041167

	7.559 - n-propanol	(41,1000 Y000)+++-60-6	4.287 - ethanol	^2_61-50-701_A2_61-50-7	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
nim	8	<u>e-03-44/003E0301 D)</u>	\$ CU-20 GIUE 1	2 2	VI- 10 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
È		1 1 1			- 07
			M	\\	- 22
			\{		- 52
			ll l		- 9Z
1			4	Ĭ	- 82
			4.624	<u>3.</u> 076	€ 0€
				76	35 -
			n-propano	<u>0</u>	- +e
) Pai	ethano	£
					. Aq
ļ		(G.10507500/bh-50-3	1 20-70-610S 1	7-02-19_CAL\07-02-19_CA	O) FID1 A, Front Signal (0

adinU	JunomA	ухез	Column	Compound	#	
a\roocc	2661.0	62648.71	Column 1:	всрвиот	τ.	
3\700cc	279I.0	78.62832	Column 2:	Ethanol	. S	
3\T00cc	0000.1	LOLTO.3 *	Column 1:	u-Eropanol	. ε	
3\T00cc	J.0000	09 <i>1</i> 98.74	column 2:	n-Propanol	7	

Sample Name : 0.300 THORISAGE FNO7311804 JG
Laboratory : Meridian
Tenestion Date : IN 2.8019

Injection Date: Jul 2, 2019
Method: ALCOHOL.M
Acq. Instrument: CN11180014-CN11041167

				
11		\[- zz
\		\		5¢ 🖣
N .		į į		59 −3
12				58 −
<u> 7.56</u> 0 -		4.288		30-}
		œ		35 -}
ģ		<u>e</u>		34 }
n-propanol		ethanol		- Aq
<u>o</u>	(3:10+0 1+00++-00-		nal (07-02-19_CAL\07-02-19_CA	•
		At 50-50-0105 1	7	.0 1 0 0 0 0 0 0 0
im 8	9	<u>_</u>		
				50 -
				22
		W .		54 -
				- 9z
		4		58 –
		4.625 -	<u>ယ</u> O	€ 0€
		11	3.076 -	35 -
		970		34-
		10	ا <u>ن</u>	Σ
			ä	£∧a
	(4.10+0-1+00/1+4-50-	n-propanol	AD_61-20-70) Isn	FID1 A, Front Sig

stinU	ЭпиошА 	Area	СоТишп	Compound	#
d\roocc	0008.0	26.60101	Column 1:	Ethanol	τ.
a\700cc	£86Z.0	22636.72	Column 2:	Ethanol	2.
a\700cc	J.0000	45.42292	Column 1:	n-Propanol	. ε
a\700cc	0000.I	T#T80 L#	Column 2:	n-Propanol	

Sample Name : 0.500 FN08031602

Acq. Instrument: ALCOHOL.M

Method : Meridian

Meridian

Meridian

rům 8	9 ,		
			- S2 - O2
7.5			- 08
7.558 - n	4.286		32
n-propanol	<u>4.28</u> 6 - ethanol		- 04
<u>8</u>			FAq
rim 8	9 7	2 38ck Signal (005F0501.D)	EID2 B. I
<u> </u>	<u> </u>		so-
	V		- sz
			- 08
	.624	3.076-	- 32
	<u>4.624 -</u> n-propanol	:6 - ≘	- 04
	oenol	ethanol	- Aq
		(G.10207200) langi& fnor	HD1 Y

stinu	ЭтиотА	укез	Column	Compound	#	
a/100cc	£002.0	45,10629	Column 1:	Echanol	·τ	
3\700cc	6T05'0	T8078.74	Column 2:	Echanol	۲,	
3\700cc	0000.1	9000T.34	Column 1:	n-Propanol	. ε	
a\700cc	0000°T	84142,74	Column 2:	n-Propanol		

Sample Name : INTERNAL STANDARD BLANK

Laboratory : Meridian

Injection Date: Jul 2, 2019

Method: ALCOHOL.M

Acq. Instrument: CULL180014-CULL041167

nim 8		9	, ,		
					50 50 50 50 50 50 50 50 50 50
	7.562				30 - 30 - 30 -
	2 - n-propanol				36 - 38
	panol				£ Aq ∓ 8€
				3, Back Signal (006F0601.D)	FIDS E
nim 8		9	<u> </u>		
			N N		22 -
			11		54-
1					- 9Z
			4.6		- 8S
			26		÷08
			l '		32 -
					34
			<u> 4.626 - п-ргорап</u> ој		Aq - 3£
			<u>u</u>	(O.10807800) tangiS fron7 ,	

•	atinU	эшошҰ	ухея	Column	Compound	#	
	a\100cc	0000.0	00000.0	Column 1:	Ethanol	٦.	
	a\T00cc	0000.0	00000.0	Column 2:	Ethanol	٠.	
	a\ 700cc	J.0000	669T9'9ħ	Column 1:	u-Ecopanol	. ε	
	a\ 700cc	0000°T	48.25599	Column 2:	n-Propanol		